

(1)

M.Sc.-IT-19-I-1026GAUHATI UNIVERSITY

Institute of Distance and Open Learning

Semester- I

M.Sc.IT

Paper: INF 1026

ADVANCED COMPUTER ORGANIZATION

AND ARCHITECTURE

CONTENTS:

BLOCK I: INSTRUCTION SET ARCHITECTURE

 AND PROCESSOR DESIGN

Unit 1 : Instruction Set Design and Architecture

Unit 2 : Combinational Circuits and its Applications

Unit 3 : Computer Arithmetic

Unit 4 : Register Transfer Language and Processor Logic Design

BLOCK II: MEMORY AND INPUT OUTPUT ORGANIZATIONS

Unit 1 : Memory Organization

Unit 2 : Cache Memory

Unit 3 : Virtual Memory and Paging

Unit 4 : Basic Input Output System-I

Unit 5 : Basic Input Output System-II

BLOCK III: ADVANCED CONCEPTS OF PARALLEL

 ARCHITECTURES

Unit 1 : Basic Parallel Architecture and Instruction Pipeline

Unit 2 : Vector Processing

Unit 3 : Advanced Concepts of Computer Architecture Implicit Parallelism

Unit 4 : Advanced Concepts of Pipelining Schedule

Unit 5 : Advanced CPU Architecture

(2)

Contributors:

Mr. Kalyanbrat Medhi (Block I : Unit- 1)
Faculty, Dept. of Computer Science
Bhattadev University, Bajali, Assam
Dr. Manash Protim Bhuyan (Block I : Unit- 2)
Asstt. Prof., Dept. of Computer Science and Engineering
Golaghat Engineering College, Golaghat, Assam
Mrs. Manjula Kalita (Block I : Unit- 3)
Asstt. Prof., Dept. of Computer Science and Engineering
GIMT, Guwahati, Assam
Mr. Rahul Lahkar (Block I : Unit- 4)
Asstt. Prof., Dept. of Computer Science
Pub Kamrup College, Assam
Mr. Dipankar Dutta (Block II : Units- 1 & 2)
Asstt. Prof., Dept. of Computer Science
NERIM, Guwahati, Assam
Dr. Pranab Das (Block II : Unit- 3, Block III: Unit 1)
Asstt. Prof.(Sr.), Dept. of Computer Applications
Assam Don Bosco University, Guwahati, Assam
Mrs. Manasi Hazarika (Block II : Units- 4 & 5)
Asstt. Prof.(Sr.), Dept. of of Computer Science and Engineering
Assam Don Bosco University, Guwahati, Assam
Dr. Kshirod Sarmah (Block III : Unit- 2)
Asstt. Prof., Dept. of Computer Science
PDUAM, Bajali, Assam
Mr. Deepjyoti Saikia (Block III : Unit- 3)
Asstt. Prof., Dept. of Computer Science
Mangaldai College, Darrang, Assam
Mrs. Epsita Medhi (Block III : Unit- 4)
Research Assistant, Dept. of Information Technology
Gauhati University, Assam
Mr. Subhomoy Dey (Block III : Unit- 5)
Asstt. Prof., Dept. of Computer Science
PDUAM, Goalpara, Assam

Content Editor:

Prof. Kandarpa Kumar Sarma
Dept. of Electronics and Communication Engineering,
Gauhati University

Course Coordination:

Prof. Dandadhar Sarma Director, IDOL, Gauhati University
Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Cover Page Designing:

Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

INSTRUCTION SET ARCHITECTURE AND

PROCESSOR DESIGN

1 | P a g e

Space for learners:
UNIT 1: INSTRUCTION SET DESIGN AND

 ARCHITECTURE

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Instruction Set Design

1.3.1. How many addresses

1.3.1.1. 3-address machines

1.3.1.2. 2-address machines

1.3.1.3. 1-address machines

1.3.1.4. 0-address machines

1.3.2. Types of Instructions

1.3.2.1. Data Transfer Instructions

1.3.2.2. Arithmetic Instructions

1.3.2.3. Bit Manipulation Instructions

1.3.2.4. Program Execution Transfer Instructions

1.3.2.5. Processor Control Instructions

1.3.2.6. Iteration Control Instructions

1.3.2.7. Interrupt Instructions

1.4. Addressing Modes

1.4.1. Immediate Addressing

1.4.2. Direct Addressing

1.4.3. Indirect Addressing

1.4.4. Register Addressing

1.4.5. Register indirect Addressing

1.4.6. Displacement Addressing

1.4.7. Stack Addressing

1.5. Processor Organisation

1.6. Register Organisation

1.6.1. User visible registers

1.6.2. Control and status registers

1.7. Instruction Cycle

1.7.1. The Indirect Cycle

1.7.2. Data Flow

1.8. Data Representation

1.8.1. Number Representation

1.8.1.1. Complements

1.8.2. Fixed point representation

1.8.3. Floating point representation

2 | P a g e

Space for learners:
1.8.4. Character representation

1.9. Summing up

1.10. Answers to Check Your Progress

1.11. Possible Questions

1.12. References and Suggested Readings

1.1 INTRODUCTION

In this unit, we will discuss addressing types, addressing modes and

representation of characters. The organization of computer

processor as well various registers is explained in brief. Here,

machine languages program using different addressing type is

elaborated. We will also know about the instruction cycle. At the

end of the chapter integer, fixed point representation, floating point

representation and character representation inside computer are

discussed.

1.2 UNIT OBJECTIVES

The objective of the unit is:

• To know the addressing type

• To know the addressing mode

• Overview of processor

• Overview of registers

• To know about instruction cycle

• Data representation in computer

1. 3 INSTRUCTION SET DESIGN

An instruction set is collection of machine language or assembly

language instructions that are understood by central processing unit

(CPU). The following issues are considered in instruction set

design:

• Whether operands are to be stored in registers, memory,

stack or accumulator

3 | P a g e

Space for learners:
• How many operands are present in instructions 0, 1, 2, or

3

• Whether access mode of operand are register, immediate,

indirect and so on.

• What are the operations that are supported in instruction

add, sub, mul etc.

1.3.1 How many addresses

Let us assume the statement in a high level programming language

given bellow

a = a + b + a * c

It is clear that the value of a multiply with c is added with a, b and

the final result is stored in the variable a. You know the precedence

and associativity rules of high level languages. However, you cannot

expect the computer hardware to directly understand these rules.

It requires operations to be performed in small steps. The desired

result will be produced after going through sequence of simple

steps. Hence, it eliminates the necessity for the machine to

understand about these rules. In most of the cases operands name

i.e. address is used rather than value. The machine may be

following types depending on addresses:

• 3-address machines

• 2-address machines

• 1-address machines

• 0-address machines

Here number 0, 1, 2, 3 indicates maximum number of

address/operand the machine can have.

Here we will use the convention that ‘first operand is

destination’ in an instruction. This means we will consider that the

result of operation will be stored in first operand of the instruction.

STEP TO CONSIDER

 The address may be either memory or computer registers. In a

particular machine final result of operation may be stored in first,

or last operand. Here, we consider that the first operand will hold

the result of the operation.

4 | P a g e

Space for learners:
1.3.1.1 3-address machines

The general format of a 3-address machine instruction is:

operation dst, op1, op2

Here, operation indicates opcode of the operation to be performed,

the first operand dst represent destination operand i.e. where the

result of operation will be stored, op1 and op2 indicates two source

operands between which operation is to be performed. Thus the

following instruction means:

ADD R2, R1, R0

Add the values stored in register R1 and R0, and store result in the

register R2.

When all operands of instructions are only in register then we call it

a register-register machine or a load-store machine. Instead of that

if all operands of instructions are only in memory then we call it a

memory-memory machine. The following is such an example:

ADD X, Y, Z

Add the value of variable y to the value of variable z and then store

the result in the memory location x. In a memory-memory machine

the CPU has to get the operands from memory prior to execution of

the operation. After that it has to store the result back in memory.

There are several ways to specify the address of an operand. We will

discuss this topic in addressing mode section.

Let us now see how to implement a3-address instruction for the

statement

a = a + b + a * c

Answer:

MUL R4, a, c # store a*c in R4

ADD R1, a, b # store a + b in R1

ADD R1, R1, R4 # Store result in R1

The final result of the expression can be found in register R1.

5 | P a g e

Space for learners:
1.3.1.2 2-address machines

The general format of 2-address machine instruction is:

operation dst, op

where, operation is opcode of the operation, dst represent the source

operand as well as destination, op represent the second source

operand. Let us see the following instruction

ADD R1, R2

The meaning of this instruction is to add the values stored in

registers R1 and R2, and then store the result back in register R1.

The advantage of 2-address instructions over three-address

instructions is that it helps in preserving memory, since they are

shorter. Moreover shorter instructions take less time for fetching.

The drawback having two-address instructions is that one of the

source operands is destroyed. It requires extra moves to retain the

operand as sometimes operand may be needed later.

Let us now see how to implement a 2-address instruction for the

statement

a = a + b + a * c

Answer:

MUL c, a # multiply a, b and store in c

MOV R1,c # move content of c to R1

ADD b,a # add a, b and store in b

MOV R2,b # move content of b to R2

ADD R1, R2 #add R1, R2 and store in R1

The final result of the expression can be found in register R1.

1.3.1.3 1-address machines

In a 1-address machine accumulator has a source operand and result

of operation is put back implicitly in the accumulator. The

instruction needs to indicate the second source operand. The format

of a 1-address instruction is as follows:

6 | P a g e

Space for learners:
operation op

The opcode ‘operation’ is the name of the operation to be done, op

indicates either source or destination operand. Here the instruction:

ADD a

It means addition of value of variable a with the content of

accumulator. The result of addition is put in the accumulator. The

accumulator is a special purpose register.

Let us now see how to implement a 2-address instruction for the

statement.

a = a + b + a * c

Answer:

LOAD a # load content of a in accumulator

MUL c # multiply accumulator i.e. a and c

ADD b # add b to previous contents of the

accumulator i.e. a * c + b

ADD a # a * c + b + a

STO a # store the final result in location a

The final result of the expression can be found in the memory

location a.

1.3.1.4 Zero-address machines

The zero-address machines are implemented using stack. A stack is

last in first out (LIFO) data structure that is operated by using PUSH

and POP. PUSH moves an operand from computer

memory into top of stack, on the other hand POP gets out the last

item from top of the stack. Only PUSH and POP indicates an

operand. No other opcode specify any operand. This is the reason

why it is called a zero address machine. The question is how then

operands are handled by the machine for the operation. It is done by

STOP TO CONSIDER

 As the number of address reduced the number of instruction

increases to do the same task.

7 | P a g e

Space for learners:
extraction top two elements of stack and putting the result back into

stack.

Let us see how to implement a zero-address instruction for the

statement

a = a + b + a * c

Answer:

PUSH a # push the value of a

PUSH c # push the value of c

MUL # multiply top two value a * c

PUSH b # push the value of b;

ADD # add top two value b + a * c

PUSH a # push the value of a

ADD # add top two value a + b + a * c

POP a # store in top of stack in a

The final result of the expression can be found in the memory

location a.

1.3.2 Types of Instructions

The computer supports the following types of instructions:

• Data Transfer Instructions

• Arithmetic Instructions

• Bit Manipulation Instructions

• Program Execution Transfer Instructions

• Processor Control Instructions

• Iteration Control Instructions

• Interrupt Instructions

1.3.2.1 Data Transfer Instructions

These instructions transfer data from the source to the destination

location inside the computer. The common data transfers are

among registers or between registers and memory or between the

register (s) and the input/output devices. Different computer uses

various mnemonics for the same instruction. The following are

some of the data transfer mnemonics with their meaning.

8 | P a g e

Space for learners:
• MOV: Transfer data from register to resister or resister to

memory.

• ST: Store from register (accumulator) to memory

• LD: Load data from memory to register

• PUSH: Transfer data from CPU register to top of the stack.

• POP: Transfer data from top of stack to CPU register

• XCHG: Exchange data between two given locations.

• IN: Read data from an input port to accumulator.

• OUT: Transfer data from accumulator to particular output

port.

1.3.2.2 Arithmetic Instructions

The basic arithmetic operations are addition, subtraction,

multiplication and division between two numbers. These arithmetic

operations are performed between two operands. Some of the

arithmetic operations may be performed on a single operand too.

Following a few arithmetic instructions:

• ADD: Add the contents of two source locations.

• MUL: Multiply the contents of two source locations.

• DIV: Divide content of one source locations with the other.

• SUB: Subtract content of one source locations from the

other.

• ADC: Add the contents of two source locations with carry.

• INC: Increment the content of source location by 1.

1.3.2.3 Bit Manipulation Instructions

These instructions manipulates data in bit level i.e. operations like

shift or logical. Below is a few instructions of this group with

meaning are given:

• NOT: This invert each bit of source bit pattern.

9 | P a g e

Space for learners:
• AND: Logical AND operation between each corresponding

bit of both source operand.

• OR: Logical OR operation between each corresponding bit

of both source operand.

• XOR – Perform logical Exclusive-OR operation between

each corresponding bit of both source operand.

• SHL: Perform bits shift towards left and fill zero in LSBs.

• SHR: Perform bits shift towards left and fill zero in MSBs.

1.3.2.4 Program Execution Transfer Instructions

These instructions transfer the control during an execution of

instructions. The transfer of control during execution of instruction

may be conditional or unconditional. A few such examples are

listed below:

• CALL: It calls a subprogram and saves the return address

on top stack.

• RET: Returns from subprogram/function to the main

program.

• JMP: Jumps to the given address and process the next

instruction.

• JC: Jumps when value of carry flag is 1

• JNC: Jumps when value of carry flag is 0

1.3.2.5 Processor Control Instructions

These instructions set or reset the flag values and thus control the

actions of the processor. Following are the instructions under this

group:

• STC: Set the carry flag (CF) to 1

• CLC: Reset the carry flag i.e. CF = 0

• CMC: Complement state of carry flag.

• STI: Set the interrupt flag to 1.

• CLI: Reset the interrupt flag to 0.

10 | P a g e

Space for learners:
1.3.2.6 Iteration Control Instructions

These instructions can execute a group of instructions repeatedly.

A few list of iteration control instructions are:

• LOOP: Execute a group of instructions repeatedly until the

condition is true.

• JCXZ: Jump to a given address if CX = 0

•

1.3.2.7 Interrupt Instructions

These instructions call an interrupt during execution of

instructions.

• INT: Interrupt the process and call service routine.

• INTO: Interrupt the process if OF = 1

• IRET: Return to main program from interrupt service.

Check Your Progress-1

1. When all operands of instructions are only in register then

we call it a ____________machine.

2. If all operands of instructions are only in memory then we

call it a ____________ machine.

3. The drawback having two-address instructions is that one of

the source operands is ____________.

4. In a one-address machine the result of operation is put back

implicitly in the _____________.

5. The zero-address machines are implemented using ______.

State TRUE or FALSE:

6.The processor has three types of organization.

7. The advantage of two-address instructions over three-

address instructions is that it helps in preserving memory.

8. The accumulator is a special purpose register.

9. MOV is control transfer instruction.

10. POP insert an operand from computer memory into top of

stack.

11 | P a g e

Space for learners:
1.4 ADDRESSING MODES

In a typical instruction, we see the address fields are relatively

small. The purpose of addressing mode is to reference main memory

locations as large as possible. This is the reason why a variety of

addressing modes have been implemented. The most commonly

used addressing modes are:

• Immediate

• Direct

• Indirect

• Register

• Register indirect

• Displacement

• Stack

Mode Algorithm Advantage Disadvantage

Immediate Operand=A No memory

reference

Limited operand

magnitude

Direct EA=A Simple Limited address

space

Indirect EA=(A) Large

address place

Multiple memory

reference

Register EA=R No memory

reference

Limited address

space

Register

indirect

EA=(R) Large

address place

Extra memory

reference

Displacement EA=A+(R) Flexibility Complexity

Displacement EA= top of

stack

No memory

reference

Limited

applicability

Table 1.1Basic Addressing Modes

The Table 1.1depicts the address calculation procedure for each

addressing mode. Each of the addressing modes will be represented

with different opcodes. The opcode may be one or more bits in the

instruction format.

STOP TO CONSIDER

 The effective address of operand is calculated after decoding

the opcode.

12 | P a g e

Space for learners:
1.4.1 Immediate Addressing

The immediate addressing holds the operand value in the

instruction.

Operand = A

This addressing mode is generally used to set initial values of

variables or constants. The primary advantage is that there is no

need of memory reference. Thus it saves one memory or cache cycle

in the instruction cycle. The disadvantage of immediate addressing

mode is that size of the number is limited to size of the address field.

1.4.2 Direct Addressing

In direct addressing mode the address field holds the effective

address of the operand:

EA = A

The advantage of direct addressing mode is that it needs only one

memory reference. The disadvantage this addressing mode is limited

address space accessibility.

1.4.3 Indirect Addressing

In direct addressing mode usually length of the address field is less

than word length. It causes limitation in address range. If the address

field refers to address of a word in memory, it can access a full-

length address of the operand. This way of accessing memory word

is known as indirect addressing. In indirect addressing mode the

address field contains address of another memory location where the

value of actual operand remains.

EA = (A)

The parenthesis interpreted as contents of ‘A’ is another address.

The disadvantage of indirect addressing is that it requires two

13 | P a g e

Space for learners:
memory references to fetch actual operand value, first to get its

address and next to get its value.

1.4.4 Register Addressing

The register addressing mode has similarity to direct addressing.

The difference here is that address field indicates a register instead

of main memory address:

EA = R

The register R specifies the address where the operand value

contains. The advantages of this mode are that a small address field

is needed and no memory references needed means less time

required for fetching instruction. The disadvantage of this mode is

that the available address space is limited to registers only.

1.4.5 Register Indirect Addressing

The register indirect addressing mode is similar to indirect

addressing mode. The only difference is that address field refers to a

register instead of memory location. Let us see the register indirect

address.

EA = (R)

The advantages and disadvantages of register indirect addressing

mode are similar to indirect addressing mode. But, register indirect

addressing mode has one more advantage since it uses one less

memory reference it save one cycle time when it is executed.

1.4.6 Displacement Addressing

The displacement addressing mode combines the direct addressing

with register indirect addressing. The effective address in this mode

looks like as:

EA = A + (R)

14 | P a g e

Space for learners:
This addressing mode the instruction contains two address fields,

out of which at least one of it is explicit. The value stored in one of

the addresses field (i.e. A) is used directly. The contents of second

address field i.e. register is added to A to obtain the effective

address. We will discuss three most commonly used displacement

addressing:

• Relative addressing

• Base-register addressing

• Indexing

RELATIVE ADDRESSING: The relative addressing is also

known as PC-relative addressing. In this mode of addressing the

register that implicitly referenced is program counter (PC). As

we know PC contains the address next instruction to be

executed. Hence, it is added to the address field in order to

produce the EA. This is how the effective address in this

addressing mode is a displacement relative to the address of the

instruction.

EA= PC + address field value

BASE-REGISTER ADDRESSING: In the base-register

addressing mode, the referenced register contains a main

memory address. The address field indicates a displacement

from that address, which is usually an unsigned integer.

EA=base register + address field value

INDEXING: In this addressing mode, the effective address of

the operand is calculated by adding content of index register

with address field value.

EA= IR+ address field value

The indexing mechanism is extensively used for implementing

iterative operations. Suppose a list of numbers present in

memory location starting from A and we want to add 1 to each

number on that list. Here, we have to fetch each number and

after adding 1 to it, store it back to that location. The effective

addresses that requires are A, A + 1, A + 2, . . ., and so on to last

location. It can be done easily with indexing. The value of A is

15 | P a g e

Space for learners:
stored in the instruction’s address field value, and the index

register is initialized to 0. At the end of each operation, index

register is incremented by 1.

1.4.7 Stack Addressing

The stack addressing is also referred to as a last-in-first-out or queue

pushdown list. In this addressing mode items are placed to the top of

the stack so that. Hence, the stack is partially filled at any given

time.

The stack is associated with a pointer called stack pointer (SP)

whose value refers to the top address of the stack. If the top two

item of the stack is in processor registers, the SP references the third

item of the stack. The stack pointer is a dedicated special purpose

register. It is a form of implied addressing. The instructions do not

require a memory reference; it always implicitly indicates the top of

the stack.

Check Your Progress-2

11. The purpose of addressing mode is to reference

______________ as large as possible.

12. The immediate addressing mode generally used to set

initial values of _________ or ________.

13. In direct addressing mode address field holds

__________address of the operand.

14. In indirect addressing mode the address field contains

________ of another memory location.

15. The displacement addressing mode combines the direct

addressing with _____________ addressing.

State TRUE or FALSE:

16.The advantage of direct addressing mode is that it needs

only one memory reference.

17. In register addressing mode one memory references

needed.

18. The stack is associated with a pointer called stack pointer.

19. Effective address is calculated after decoding an

instruction.

20. In stack addressing two memory references needed.

16 | P a g e

1.5 PROCESSOR OR

The computer processor need

an instruction:

• Fetch instruction: The p

memory i.e. from register, ca

• Interpret instruction: Af

to know what action to be pe

• Fetch data: During the ex

read data from computer mem

• Process data: In execution

perform either arithmetic or l

• Write data: At the end of

need to write data to

In order to do these, it clears

store intermediate data. H

internal memory.

Figure 1.1 is a block diagram

to the rest of the system thr

of the central processing unit

• Arithmetic and logic

• Control unit (CU).

• Registers

Figure1.1: Th

R ORGANISATION

or needs to do the following things to execute

The processor has to read instructions from

ter, cache or main memory.

After reading an instruction it is decoded

 be performed.

the execution of an instruction it may need to

er memory or input/output (I/O) module.

ecution time of an instruction, it may have to

tic or logical operation on data.

nd of an instruction execution, the results may

 to main memory or an I/O module.

t clears that the processors sometimes have to

ta. Hence, the processor requires a small

iagram of a processor depicting its connection

m through system bus. The vital components

g unit are

 logic unit (ALU)

.1: The block diagram of CPU

Space for learners:

17 | P a g e

Space for learners:
The ALU performs the actual processing of data. The CU controls

the data and instructions movement in the processor. It also controls

the operations of the ALU. The figure also depicts internal memory

of processor, called registers.

In general, CPU or processor organization has three categories

depending on the number of address fields:

• Single Accumulator organization

• General register organization

• Stack organization

In accumulator based organization, a special purpose register

called accumulator is used for performing the operations. In

general, register organization involves different registers in the

computation tasks. In the stack organization the calculations

performed on top of the stack. The instruction of stack

organization does not contain any address field. In general, a

combination of different organizations is mostly used.

1.6 REGISTER ORGANISATION

The computer system consists of memory in different level called

hierarchy. At top levels of the hierarchy means memory is faster

than the bellow level. In this level it is smaller as well as more

expensive. The register inside the processor is top level memory

followed by cache memory and main memory respectively. The

registers have two categories:

• User-visible registers

• Control and status registers

STOP TO CONSIDER

 The address bus, data bus and control bus are together called

system bus. Operand address bits can travel through address bus,

data bits travel trough data bus and CPU generated signal travel

through control bus. The processor interaction with main memory

is done through these buses.

18 | P a g e

Space for learners:
1.6.1 User-Visible Registers

The user-visible registers are used by assembly language

programmer in order to minimize main memory references. It can be

in the following types:

• General purpose register

• Data

• Address

• Condition codes

General-purpose registers are used to store temporary data during

execution of instruction. For a given opcode the general-purpose

register can holds the operand. This is true use of general purpose

registers. The general-purpose registers sometimes can be used for

addressing purpose (e.g., register indirect, displacement).

Data registers can be used to hold data only. It cannot be used for

calculating of operand address.

Address registers may either general purpose or devoted to an

individual addressing mode. The following are examples of it:

• Segment pointers: The segment register is used to hold the

address of the base of the segment.

• Index registers: These registers are used for auto indexing in

indexed addressing.

• Stack pointer: In stack addressing a dedicated register is used

called stack pointer.

Condition codes (flags): These are bits set by the processor

depending on result of an operation. As we know, result of

arithmetic operation may be positive, negative, zero, or overflow. In

this case a condition code (flag) is set and result is stored in memory

or register. Subsequently the code may be tested during execution of

conditional branch operation.

19 | P a g e

Space for learners:
1.6.2 Control and Status Registers

The operations of processor are controlled by variety of internal

registers. In general, these registers are not visible to programmer or

user. Here, we will discuss four such essential registers.

• Program counter (PC): It holds the address of the next

instruction to be executed.

• Instruction register (IR): It holds the address of currently

executed instruction.

• Memory address registers (MAR): It holds the address of an

instruction to be fetched.

• Memory buffer registers (MBR): Holds data that needs the

current instruction or result produced by the instruction.

Another of register that includes in a processor is called the program

status word (PSW). It contains condition code and other status

information. The followings are status flags:

• Sign: It holds sign bit of the recent arithmetic operation.

• Zero: It is set when the result of operation is 0.

• Carry: It is set if addition operation produce a carry or borrow

(for subtraction) from lower order bit.

• Equal: Set if a logical comparison of two operands is equal.

• Overflow: When arithmetic operation produces overflow it is set.

• Interrupt Enable/Disable: This flag is used to enable or disable

the interrupts.

• Supervisor: It indicates the execution mode of processor

(supervisor or user). Some of the privileged instructions are

executed only in supervisor mode. Similarly, certain memory

location can be accessed through supervisor mode only.

1.7 INSTRUCTION CYCLE

An instruction cycle goes through the following stages:

•Fetch: The processor reads the next instruction from PC

20 | P a g e

Space for learners:
•Execute: Decode the opcode and perform the required operation.

• Interrupt: If interrupt occurs, pause the current process, save

status of it and go to the interrupt.

Before elaborating instruction cycle it’s important to know one

additional stage called indirect cycle.

1.7.1 The Indirect Cycle

During instruction execution it may have one or more operands that

need memory access. In case of indirect addressing additional

memory accesses are needed. The Figure 1.2 depicts instruction

cycle.

After fetching the instruction it is checked to see if it involves any

indirect addressing. If indirect addressing involves the operands are

fetched according to indirect addressing. After execution, an

interrupt will process if occurs before fetching the next instruction.

Check Your Progress-3

21. The _______ performs the actual processing of data.

22. The CPU organization has _______ categories.

23. The computer system consists of memory in different level

called _______.

24. __________registers are used to store temporary data

during execution of instruction.

25. The execution mode of processor either _______or _____.

State TRUE or FALSE:

26.The CU controls the data and instructions movement in the

processor.

27. The segment register is used to hold the address of the base

of the segment.

28. PC holds the address of current instruction executing.

29. MBR holds the address of an instruction to be fetched.

30. Carry flag is set if addition operation produce a carry.

21 | P a g e

Space for learners:

Figure 1.2 Instruction Cycle

After fetching the instruction the operand are fetched from memory.

If the operand are in register then fetching is not required. Once

execution of instruction is completed the result may be needed to

store in main memory.

1.7.2 Data Flow

In an instruction cycle sequence of events occurs according to the

design of processor. Suppose, a processor consist of a program

counter (PC), a memory address register (MAR), a memory buffer

register (MBR), and an instruction register (IR).

Figure 1.3 Data Flow, Fetch cycle

Figure 1.3 depicts the data flow during fetch cycle. The PC holds

the address of the next instruction to be fetched. This address is

placed on the address bus through the MAR.

22 | P a g e

The CU requests a main me

instruction. The requested re

to the MBR and finally reac

incremented for fetching the

cycle, the CU checks the

operand specifier using indir

found, indirect cycle is pe

depicts this simple cycle. Th

transferred to the MAR. A

request. Then desired addre

through address bus.

Figure 1.4 D

The fetch and indirect cycl

may have various stages. It

transfer of data, read/write o

other hand the interrupt cy

cycle. It is depicted in figur

status of the PC must be in o

interrupt. So, the contents of

written to memory. For thi

reserved and it is loaded int

memory may be a stack poin

interrupt routine. Hencefort

the desired instruction.

in memory read to fetch the required for the

sted result is placed on the data bus and goes

y reached the IR. In the mean time, the PC is

ing the next instruction. At the end of fetch

s the IR to know whether it’s holding an

g indirect addressing. If indirect addressing is

is performed after fetch cycle. Figure 1.4

le. The address reference bits of the MBR are

R. After that the CU place a memory read

 address of the operand is placed in MBR

 1.4 Data Flow, Indirect cycle

t cycles are very simple. The execute cycle

es. It many involve ALU operation, register

write operation from memory or I/O. On the

t cycle is as simple as fetch and indirect

 figure 1.5. Before going to interrupt current

in order to resume normal activity after the

ents of the PC is transferred to the MBR and

or this purpose special memory location is

ded into the MAR from the CU. The special

k pointer. The PC is filled with the address of

ceforth, the next instruction cycle will fetch

Space for learners:

23 | P a g e

Figure 1.5 Da

1.8 DATA REPRESE

A digital computer represen

number system due to follow

• In digital computers all el

mode.

• Computers use binary syste

• Whatever can be done usi

done using a binary number s

1.8.1 Number represen

The numbers in computer

system. An r base number sy

number has 10 digits. So,

system. The binary numbers

called base 2 number system

digits 0, 1, 2, 3, 4, 5, 6 and

written as follows with powe

STOP TO

The instruction cycle has dif

opcode, effective address calcu

data and writing data in memor

1.5 Data Flow, Interrupt Cycle

RESENTATION

epresents all types of information in binary

following reasons:

 all electronic components operate in binary

y system where only two digits present.

ne using decimal number system can also be

mber system.

resentation

puter are represented using binary number

ber system uses r distinct digits. The decimal

. So, decimal numbers are 10-base number

mbers system has two digits ‘0’ and ‘1’. It is

 system. The octal numbers system has eight

 6 and 7. The decimal number 831.6 can be

 power of base 10.

P TO CONSIDER

as different stages fetching, decoding

s calculation, execution of operation on

emory that are executed in sequence.

Space for learners:

24 | P a g e

Space for learners:
8 x 10

2
 + 3 x 10

1
 + 1x 10

0
 + 6 x 10

-1

When a binary number 101101 is written in this way with power of

base 2, it provides decimal equivalent.

1 x 2
5
 + 0 x 2

4
 + 1 x 2

3
 + 1 x 2

2
 + 0 x 2

1
 + 1 x 2

0
 = 45

The decimal number can be converted to r base number system by

using the steps:

• At first the number is separated into its integer and fraction

parts and then each part converted separately.

• The integer part is converted to r base by dividing it

successively with r until it becomes zero.

• The remainders in reverse order give the r base equivalent.

• The fraction part is converted to r base by multiply it

repeatedly by r until its fraction part becomes zero.

Suppose, decimal number 112.8125 has to convert into binary. Here

integer part is 112 and fraction part is 0.8125. At first, we will

convert integer part 112 into binary then fraction part according to

above rules. Since binary number system is 2 base we will divide

112 by 2 until it become zero. The following table depicts the

process.

Division Remainder

112 / 2 = 56 0

56 / 2 = 28 0

28 / 2 = 14 0

14 / 2 = 7 0

7 / 2 = 3 1

3 / 2 = 1 1

1 / 2 = 0 1

Now write down the remainder in reverse order i.e. 1110000 which

is binary equivalent number of decimal integer 112. Next, the

fraction part 0.81252 is multiplied by 2. The fraction of that result is

again multiplied by 2until fraction part become zero.

STOP TO CONSIDER

The hexadecimal numbers system has 16 digits 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, A, B, C, D, E and F.

25 | P a g e

Space for learners:
Multiplication Resultant integer part (R)

0.81252 x 2= 1.625 1

0.6252 x 2= 1.25 1

0.252 x 2= 0.50 0

0.50 x 2= 1.0 1

0 x 2 = 0 0

The binary equivalent of fraction will be 0.11010. Using the same

rules we can convert a decimal number to any base system.

1.8.1.1 Complements

Complements simplify the subtraction and logical manipulation in

digital computer. There are two types of complements present in r

base system namely r’s and (r – 1)’s complement. If a number N in r

base contains n digits, the (r – 1)’s complement of N is calculated as

(r
n
 – 1) – N. For a decimal number, the 9’s complement of N is (10

n

– 1) – N. Thus, 9’s complement of 545700 is 999999 – 545700 =

454299. In case of binary number, the 1’s complement of N is

calculated as (2
n
 – 1) – N. Thus, 1’s complement of 1011000 is

1111111 – 1011000 = 0100111. Simply, 1’s complement is obtained

by just toggling all bits. The r’s complement of a number N with n-

digit is calculated as n – N. This is like adding 1 to the (r – 1)’s

complement of the number. Thus, 10’s complement of 2389 is 7610

+ 1 = 7611. Similarly, 2’s complement of 101100 is 010011 + 1 =

010100.

Check Your Progress-4

31. Computers use ________ system where only two digits

present.

32. The octal numbers system has _______ digits.

33. The hexadecimal numbers system has _______ digits.

34. Complements simplify the ___________ operation.

State TRUE or FALSE:

35. The decimal integer part is converted to r base by dividing

it successively with r until it becomes zero.

36. There are two types of complements present in r base

system namely r’s and (r + 1)’s complement

37. 1’s complement is obtained by just toggling all bits.

38. The binary number system has base 2.

26 | P a g e

1.8.2 Fixed-Point Repr

All positive integer numbers

number. In order to represen

numbers must be used. Beca

these sign are represented by

bit of signed number is 0 for

point number representation

• Sign field

• Integer field

• Fractional field.

Figure 1.6: F

The 2’s complementation r

due to easier for arithmetic o

In a 32 bit register 1 bit res

reserved for the integer part

number -43.625 can be repre

1.7.

Figure 1.7: R

The sign bit 1 represent -

equivalent for decimal 43 an

binary equivalent for fraction

1.8.3 Floating-Point Re

The floating number consists

fixed point number that is ca

 Representation

mbers and zero can be considered as unsigned

present negative numbers in computer signed

. Because + and – signs are not present, rather

ted by either ‘0’ or ‘1’. The most significant

s 0 for positive and 1 for negative. The fixed-

tation has three parts as depicts in figure 1.6.

Fixed-point number representation

tion representation is common in computer

etic operations.

bit reserved for the sign. Assume 15 bits are

r part and 16 bits for the fractional part. The

represented in register as depicted in figure

1.7: Representation of -43.625

 and 000000000101011 is 15 bit binary

l 43 and 1010000000000000 represent 16 bit

raction 0.625.

int Representation

onsists of two parts. The first part is a signed

t is called mantissa. The second part exponent

Space for learners:

27 | P a g e

represents the position of th

point mantissa is either fr

number always represent in t

Figure 1.8: Floating

The mantissa M and the expo

sign as depicted in figure 1.8

base 10 for the exponent a

exponent. A floating-point n

significant bit (MSB) of the

MSB, or sign bit, is 0 a

magnitude. On the other h

sign bit, is 1. The rest of th

three ways

Signed-magnitude representa

Signed-1’s complement repre

Signed-2’s complement repre

Using floating point repres

represented in the normalize

use as sign bit, 8 bits use for

represents fractional part.

represented as depicted in fig

is (-110101.1)2 and normalize

Figure 1.9: Floatin

1.8.4 Character Repres

Different character codes

characters in bits 0 and 1. T

 of the decimal (or binary) point. The fixed

her fraction or integer. The floating point

nt in the form M x r
e
.

oating point representation in register

e exponent e present in the register with their

ure 1.8. A floating-point decimal number use

nent and binary number use base 2 for the

oint number is called normalized if the most

of the mantissa is 1. For positive integer, the

s 0 and the remaining bits represent the

ther hand for negative number, the MSB, or

t of the number can be represented in one of

resentation

t representation

t representation

representation any non-zero number can be

alized form. Suppose, in 32-bit register 1 bit

se for signed exponent, and remaining 23 bits

part. Now the decimal number −53.5 can

d in figure 1.9. The binary equivalent of -53.5

rmalized representation is (-1.101011)x2
5

loating point representation of -53.5

epresentation

odes are used to represent alphanumeric

d 1. The most commonly used character code

Space for learners:

28 | P a g e

Space for learners:
is American standard Code for Information Interchange (ASCII).

ASCII uses 7-bits that provides 128 bit-patterns. In ASCII there are

26 lowercase and uppercase letters, 10 digits, and 32 punctuation

marks. The remaining represents whitespace characters and special

control characters. The uppercase A-Z, lowercase a-z and the digits

0-9 are in continuous series.

Bit positions 654

Bit

positions

000 001 010 011 100 101 110 111 3210

NUL DLE SP 0 @ P ‘ p 0000

SOH DC1 ! 1 A Q a q 0001

STX DC2 “ 2 B R b r 0010

ETX DC3 # 3 C S c s 0011

EOT DC4 $ 4 D T d t 0100

ENQ NAK % 5 E U e u 0101

ACK SYN & 6 F V f v 0110

BEL ETB ‘ 7 G W g w 0111

BS CAN (8 H X h x 1000

HT EM) 9 I Y i y 1001

LF SUB * : J Z j z 1010

VT ESC + ; K [k { 1011

FF FS , < L \ l | 1100

CR GS - = M] m } 1101

SO RS . > N ^ n ~ 1110

SI US / ? O _ o DEL 1111

1.9 SUMMING UP

• An instruction set is collection of machine language or

assembly language instructions that are understood by

central processing unit (CPU).

29 | P a g e

Space for learners:
• The machine may be 3-address machines, 2-address

machines, 1-address machines and 0-address machines

• The computer supported instructions types are Data Transfer

Instructions, Arithmetic, Bit Manipulation, Program

Execution Transfer, Processor Control, Iteration Control and

Interrupt Instructions.

• The most commonly used addressing modes are Immediate,

Direct, Indirect, Register, Register indirect, Displacement

and Stack addressing.

• CPU or processor organization has three categories: Single

Accumulator organization, General register

organization and Stack organization.

• The register inside the processor is in top level memory

hierarchy followed by cache memory and main memory

respectively.

• The registers have two categories: user-visible registers and

control and status registers

• General-purpose registers are used to store temporary data

during execution of instruction.

• Data registers can be used to hold data only. It cannot be

used for calculating of operand address.

• Address registers may either general purpose or devoted to

an individual addressing mode.

• PC holds the address of the next instruction to be executed.

• IR holds the address of currently executed instruction.

• MAR holds the address of an instruction to be fetched.

• MBR holds data that needs the current instruction or the

result produced by the instruction.

• The use of status flags:

Sign: It holds sign bit of the recent arithmetic operation.

Zero: It is set when the result of operation is 0.

Carry: It is set if addition operation produce a carry or

borrow (for subtraction) from lower order bit.

• The numbers in computer are represented using binary

number system.

• The floating number consists of two parts. The first part is a

signed fixed point number that is called mantissa. The

second part exponent represents the position of the decimal

(or binary) point.

30 | P a g e

Space for learners:
• In ASCII there are 26 lowercase and uppercase letters, 10

digits, and 32 punctuation marks. The remaining represents

whitespace characters and special control characters.

1.10 ANSWERS TO CHECK YOUR PROGRESS

1. Register-register

2. Memory-memory

3. Destroyed

4. Accumulator

5. Stack

6. True

7. True

8. True

9. False

10. False

11. Memory location

12. Variable, constant

13. Effective

14. Address

15. Register indirect

16. True

17. False

18. True

19. True

20. False

21. ALU

22. Three

23. hierarchy

24. General

25. Supervisor, user

26. True

27. True

28. False

29. False

30. True

31. Binary

32. Eight

33. Sixteen

34. Subtraction

35. True

36. False

37. True

38. True

1.11 POSSIBLE QUESTIONS

Short answer type questions:

1. What is an instruction set?

2. Write the type of instruction for the following:

JUMP, ADD

3. What are the types of CPU organization?

4. Arrange the followings in ascending order of access time:

Secondary memory, Register, Main Memory, Cache

Memory

5. What type of buses the system bus has?

6. What is the use of immediate addressing?

7. What is the Indirect Addressing? Give examples.

31 | P a g e

Space for learners:

8. What is an accumulator?

9. Write assembly language code to evaluate

X = (A-B) + (C-D) for stack based CPU

10. What are the categories of registers?

11. What happens to PC when interrupt occurs?

12. What is floating point representation?

13. What is 1’s complement of 10011010?

14. What is 2’s complement of 11000111?

15. Convert the decimal number 26.578 into binary number.

Long answer type questions:

1. Briefly explain the various addressing modes.

2. Briefly explain the instruction cycle.

3. List any five instruction types with adequate examples.

4. Convert decimal number 56.789 into binary, octal and

hexadecimal number.

5. Briefly explain the data flow process with block diagram.

1.12 REFERENCES AND SUGGESTED

 READINGS

• Computer Architecture and Organization by B.

Govindarajalu.; TMH publication.

• Advanced Computer Architecture A systems Design

Approach by Richard Y. Kain; PHI Publication

• Computer Organization and Architecture Designing for

Performance by William Stallings; Pearson Education

• Computer System Architecture by M. Morris Mano, PHI

Publication.

---×---

Space for learners:

32 | P a g e

UNIT 2: COMBINATIONAL CIRCUITS AND ITS

 APPLICATIONS

Unit Structure

2.1 Introduction

2.2 Unit Objectives

2.3 AND-OR logic combinational circuit

2.4 AND-OR-Invert logic combinational circuit

2.5 Exclusive-OR logic

2.6 Exclusive-NOR logic

2.7 Implementing Combinational logic

2.7.1 Logic circuit design from boolean expression

2.7.2 Logic circuit design from truth table

2.8 The universal property of NAND and NOR gates

 2.8.1 The NAND gate as a universal logic element

 2.8.2 The NOR gate as a universal logic element

 2.8.3 Combinational circuit using NAND gate

 2.8.4 Combinational circuit using NOR gate

2.9 Combinational logic circuit Functionalities

 2.9.1 The comparison function

 2.9.2 The Arithmetic function

 2.9.3 Basic Adders

 2.9.3.1 The Half-Adder

 2.9.3.2 The Full-Adder

 2.9.3.3 Parallel Binary Adders

 2.9.3.4 Truth table for 4-bit parallel adder

 2.9.4 Binary Subtractor

 2.9.4.1 The Half-Subtractor

 2.9.4.2 The Full-Subtractor

 2.9.5 Comparators

 2.9.5.1 Equality

 2.9.5.2 Inequality

 2.9.6 Decoders

 2.9.6.1 The Basic Binary Decoder

 2.9.6.2 3-to-8 line Decoder

 2.9.7 Encoders

 2.9.7.1 Decimal to BCD Encoder

 2.9.8 Multiplexers

 2.9.9 Demultiplexers

2.10 Summing up

Space for learners:

33 | P a g e

2.11 Key terms

2.12 Answers to check your progress

2.13 Possible Questions

2.14 References and Suggested Readings

2.1 INTRODUCTION

This chapter describes the combinational circuits and the

applications of combinational circuits. Sum of Product (SOP) and

Product of Sum (POS) forms are the basic building blocks of the

combinational circuits. When the logic gates are connected together

to produce some specific output the resulting electronic circuit is

known as combinational circuits, the combinational circuits

don’tpossess any memory capacity. The output of the circuit always

depends on the combination of the input variables.

2.2 UNIT OBJECTIVES

The unit is describing the designing and applications of

combinational logic circuits. After completing the unit students′ will

able to:

● Analyze and apply different combinations of the

logic gates.

● Design combinational circuits from the Boolean

expressions.

● Design combinational circuits from the truth table.

● Describe the universal behaviour of NAND and NOR

logic gates.

● Explain and describe adder circuits.

● Analyze the comparator circuits.

● Describe decoders and encoders

● Describe multiplexers and demultiplexers

●

2.3 AND-OR LOGIC COMBINATIONAL CIRCUIT:

The Figure 2.1 shows an AND-OR circuit consisting of two input

AND gates and one two input OR gate. The Boolean expression for

34 | P a g e

the AND gate outputs and

output Y are shown on the

can have any number of AND

Figure 2.1 A

The truth table for the abo

Table-2.1. The outputs of the

INPUTS

P Q R

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

Table 2.1 Truth table

2.4 AND-OR-INVERT LO

If the output of the AND-OR

the resultant circuit is called

s and the resulting SOP expression for the

the circuit diagram. The AND-OR circuit

f AND and OR with any number of inputs.

e 2.1 AND-OR logic diagram

he above combinational circuit is shown in

 of the AND gates are also shown in the table.

PQ

RS

OUTPUT

Y
 S

 0 0 0 0

 1 0 0 0

 0 0 0 0

 1 0 1 1

 0 0 0 0

 1 0 0 0

 0 0 0 0

 1 0 1 1

 0 0 0 0

 1 0 0 0

 0 0 0 0

 1 0 1 1

 0 1 0 1

 1 1 0 1

 0 1 0 1

 1 1 1 1

 table for the logic circuit of Figure 2.1

T LOGIC COMBINATIONAL CIRCUIT

OR circuit is complemented i.e. inverted,

 called AND-OR-Inverted circuit. The AND-

Space for learners:

35 | P a g e

OR logic implements the S

POS expressions can be obta

The logic circuit diagram F

circuit and development of th

Y = (P′+Q′)(R′+S′) = (PQ

+((RS)′))′)′ = (PQ + RS)′

Figure 2.2

In general, an AND-OR-Inve

gates each with any numb

developed from the AND-

changing all 1s to 0s and all 0

STOP

● The AND-OR logic

other words, the SO

AND-OR logic.

● The AND-OR-Invert

in other words, the P

AND-OR-Inverted lo

2.5 EXCLUSIVE-OR L

The exclusive-OR gate is c

own unique symbol; it is act

one OR gate, and two invert

The output is 1 only if the tw

 the SOP expression and the corresponding

e obtained using the AND-OR-Inverted logic.

ram Figure 2.2 shows an AND-OR-Inverted

nt of the POS output expression.

= (PQ)′(RS)′ = (((PQ)′(RS)′)′)′ = (((PQ)′)′

re 2.2 AND-OR Invert logic

Invert circuit can have any number of AND

 number of inputs. A truth table can be

-OR truth table in Table 2.1 by simply

nd all 0s to 1s in the output column.

TOP TO CONSIDER

 logic implements the SOP expressions, in

he SOP expressions are implemented using

Inverted logic implements POS expressions,

, the POS expressions are implemented using

rted logic

OR LOGIC:

e is considered a type of logic gate with its

actually a combination of two AND gates,

 inverters (NOT gate) as shown in Figure 2.3.

 the two inputs are at opposite levels.

Space for learners:

36 | P a g e

Figure 2.3

The output expression for the

i.e. Y = A ⊕ B

 The truth table for exclusive

A

0

0

1

1

Table 2.2: Tru

2.6 EXCLUSIVE-NOR

The complement of exclus

which is derived as follows:

Y = (AB′+A′B)′ = (AB′)′(

The output Y is 1 only if th

level. The exclusive-NOR ca

the output of an exclusive-

ure 2.3 Exclusive-OR logic

 for the circuit in Figure 2.3 is Y = AB′ + A′B

lusive-OR is shown in Table 2.2.

 B Y

0 0

1 1

0 1

1 0

.2: Truth table of exclusive-OR

NOR LOGIC

exclusive-OR is known as exclusive-NOR,

lows:

AB′)′(A′B)′ = (A′ + B)(A+B′) = A′B′ + AB

ly if the two inputs A and B are at the same

OR can be implemented by simply inverting

-OR. The following Figure 2.4 (a) shows

Space for learners:

37 | P a g e

the exclusive-NOR and

implementation of the expres

Figure 2.4

Figure 2.

STOP

● Exclusive-OR (XOR)

gates, one OR gate, and

● Exclusive-NOR (XNO

gates, one OR gate, an

is obtained by applying

2.7 IMPLEMENTING

This section will describe t

circuits. The first method d

and Figure 2.4(b) shows the direct

 expression A′B′+AB.

ure 2.4(a) Y = (AB′+A′B)′

ure 2.4(b) Y = A′B′ + AB

TOP TO CONSIDER

XOR) logic is a combination of two AND

te, and two inverters (NOT gate)

(XNOR) logic is a combination of two AND

ate, and three inverters (NOT gate) or XNOR

plying an inverter at the output of XOR.

ING COMBINATIONAL LOGIC

ribe the methods of implementing the logic

thod describes the implementation from the

Space for learners:

38 | P a g e

Boolean expression and

implementation from the trut

2.7.1 Logic circuit design fr

 Let us consider the fo

 Y = (A+B)(C+

A closer observation shows t

two terms.

The first term is formed by

and the second term is forme

and E. The two terms are th

output Y. The OR operation

operation.

To design the combinational

form the term A+B and a 3

term C+D+E. A 2-input AN

two OR terms. The resulting

Figure 2.5. Logic circuit fo

Let us implement the followi

Y = (

Like the previous example, l

The terms A+B and (C′D′+

term C′D′+EF is first formed

and F and then performs O

Before getting the expression

EF, before these two terms

operation must be perform

and the second method describes the

he truth table.

sign from Boolean expression

 the following Boolean expression:

+B)(C+D+E)

hows that the above expression ′Y′ consists of

ed by doing OR operation between A and B,

rmed by doing OR operation among C, D,

 are then AND together to produce the final

erations must be performed before the AND

tional circuit, a 2-input OR gate is required to

nd a 3-input OR gate is required to form the

ut AND gate is then required to combine the

ulting logic circuit is shown in Figure 2.5.

rcuit for the expression Y =(A+B)(C+D+E)

ollowing expression as another example.

Y = (A+B)(C′D′+EF)

ple, let′s have a closer look at the expression.

′D′+EF) are AND together to form Y. The

formed by doing AND between C′ and D′, E

rms OR operation between these two terms.

ression C′D′ +EF, you must have the C′D′ and

terms you must have C′ and D′. So, the logic

erformed in proper order. The logic gates

Space for learners:

39 | P a g e

required to implement the e

follows:

a. Two NOT gates to ge

b. Two 2-input AND ga

c. Two 2-input OR gate

d. One 2-input AND gat

The logic circuit of this expre

Figure 2.6. Logic diagram f

2.7.2. Logic circuit design f

Instead of using the SOP e

circuit you can use the truth

can deriveusing the SOP exp

of such an implementation.

Inputs

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 2.3: Tru

t the expression Y = (A+B)(C′D′+EF) are as

s to get C′ and D′

ND gates to form C′D′ and EF

R gates to form A+B and C′D′+EF

D gate to form Y.

s expression is shown in Figure 2.6

ram for the expression Y = (A+B)(C′D′+EF)

sign from truth table

SOP expression to design the combinational

e truth table and from the truth table thatyou

OP expression. Table 2.3 shows one example

tion.

Output

Y

Product Terms

C

 0

 0

 1 A′BC′

 0

 1 AB′C′

 0

 0

 1 ABC

3: Truth table for logic function

Space for learners:

40 | P a g e

The Boolean expression obta

Y = A

The expression Y is obtaine

product terms for which the

are formed by doing AND op

and (A, B, C) respectively.

the circuit are as follows:

a. Three NOT gates.

b. Three 3-input AND g

c. One 2-input OR gate.

Figure 2.7 Log

Reduce the combinational l

minimum form.

Figure 2.8 Comb

The expression for

(A′B′C′)′C+(A′B′C′)′+

n obtained for the Table 2.3 is given below:

 = A′BC′+AB′C′+ABC

obtained by doing OR operations among the

ch the output is 1. The first, second, and third

ND operations among (A′, B, C′), (A, B′, C′),

ively. The logic gates required to implement

ND gates.

 gate.

.7 Logic diagram for the expression Y =

A′BC′+AB′C′+ABC

ional logic circuit shown in Figure 2.8 to a

 Combinational logic circuit to be reduced

n for the output of the circuit is Y =

′B′C′)′+D

Space for learners:

41 | P a g e

Applying D′ Morgan′

Y = ((A′)′+(B′)′+(C′)′

 = AC+BC+CC+A+

 =C(A+B+1)+A+B+

 Y=A+B+C+D

The simplified circuit is a 4

2.9

Figure 2.9 Reduce

Note: Before implementing

reduce the algebraic express

number of gates required to

leads to reduction of propag

number of gates, the more t

produced by the circuit will i

STOP

● The implementation

from the Boolean exp

● The expression shou

identify the number o

● Before implementing

reduce the expression

● If the number of gat

circuit then the propa

CHECK Y

1. POS stands for _____

2. SOP stands for _____

3. An Exclusive-OR can

4. The number of AND

boolean expression A

organ′s theorem and Boolean algebra,

′+(C′)′)C+(A′)′+(B′)′+(C′)′+D

C+A+B+C+D

A+B+C+D

 is a 4-input OR gate as shown in the Figure

educed form the logic circuit of Figure 2.7

nting the logic circuit directly it is better to

xpressions to its minimized form so that the

red to implement the circuit is minimum. This

propagation delay among the gates. More the

more the propagation delay and also the heat

t will increase.

TOP TO CONSIDER

tation of combinational logic circuits is either

expression or truth table.

n should be carefully observed and has to

mber of AND, OR, inverters required.

enting the logic circuit, it is advisable to

ression by applying the boolean algebra

of gates are less in the final combinational

 propagation delay will also be minimal.

ECK YOUR PROGRESS

R can be represented as ______

 AND gates required to implement the

sion ABC is ____

Space for learners:

42 | P a g e

2.8 THE UNIVERSAL PRO

 GATES

Till now, you have studied

AND and OR, and NOT

universal property of NAND

NAND means it can be used

NAND gates can be used t

operations. Similarly, the N

inverter, AND, OR, and NAN

2.8.1 The NAND gate as a u

The NAND gate is a univ

produce the NOT, the AND

inverter can be made from

inputs together and creating,

Figure 2.10(a) for a 2-inp

generated by the use of NA

2.10(b). An OR function c

gates, as shown in Figure 2.

also be produced as shown in

Figure 2.10(a) NA

Figure 2.10(b) Two NAND

L PROPERTY OF NAND AND NOR

tudied combinational circuits designing with

NOT gates. This section will describe the

NAND and NOR gates. The universality of

e used as an inverter and the combinations of

used to implement the AND, OR, and NOR

the NOR gate can be used to implement the

d NAND operations.

 as a universal logic element

a universal gate because it can be used to

 AND, the OR, and the NOR functions. An

from a NAND gate by connecting all of the

ating, in effect, a single input as shown in the

input gate. An AND function can be

 of NAND gates alone as shown in Figure

tion can be implemented with only NAND

ure 2.10(c). Similarly, the NOR function can

own in Figure 2.10(d).

(a) NAND gate as inverter or NOT

NAND gates are combined to produce AND

operation

Space for learners:

43 | P a g e

Figure 2.10(c) Three NAN

Figure 2.10(d) Four NAND

In Figure 2.10(b), a NAND g

form the AND function whic

 Y = ((AB)′)′ = AB

In Figure 2.10(c), NAND ga

the two input variables befo

The OR gate output is derive

theorem:

 Y = ((A′B′)′ = A + B

In Figure 2.10(d), NAND ga

to the circuit of part (c) to pro

Finally, we can conclude tha

implement any logic function

2.8.2 The NOR gate as a Un

The NOR gate can also be us

NAND functions. A NOT c

NOR gate by connecting al

create a single input, as sh

example. Also, an OR gate

shown in Figure 2.11(b). An

e NAND gates are combined to produce OR

operation

 NAND gates are combine to produce NOR

operation

AND gate is used to invert a NAND output to

n which is given below:

ND gates G1 and G2 are combined to invert

s before they are applied to NAND gate G3.

 derived as follows by applying DeMorgans′s

A + B

ND gate G4 is used as an inverter connected

) to produce the NOR operation (A+B)′.

de that using the NAND gate it is possible to

nction.

s a Universal logic element

o be used to produce the NOT, AND, OR, and

NOT circuit, or inverter, can be made from

ting all of the inputs together to effectively

 as shown in Figure 2.11(a) with a 2-input

 gate can be produced from NOR gates as

b). An AND gate can be produced using the

Space for learners:

44 | P a g e

NOR gates as shown in the

G2 are used as inverters and

DeMorgan′s theorem as follo

Y = (A′+B′)′ = AB

Figure 2.11(d) shows the im

NOR gates. Hence we can

work as a universal gate like

Figure 2.11(a)

Figure 2.11(b) NOR gates a

Figure 2.11(c) NOR gates ar

Figure 2.11(d) NOR gat

2.8.3 Combinational circuit

NAND gates can work as eit

DeMorgan′s theorem.

 (AB)′ = A′ + B′

in the Figure 2.11(c), the NOR gates G1 and

rs and the final output is derived by the use of

s follows:

the implementation of NAND function using

e can conclude that the NOR gate can also

te like the NAND gate.

.11(a) NOR gate used as inverter

gates are combined to produce OR operation

ates are combined to produce AND operation

R gates are combined to produce NAND

operation

circuit using NAND gate

 as either NAND or negative OR by applying

Space for learners:

45 | P a g e

Consider the NAND logic

expression is developed in th

 Y = ((AB′)(CD′))′

 = ((A′+B′)(C′+D′))′

 = (A′+B′)′+(C′+D′)

 = (A′)′(B′)′ + (C′)′(D

 = AB + CD

Figure 2.12 Implementation

usin

2.8.4 Combinational circuit

The NOR gate can work a

shown by DeMorgan′s theore

 (A+B)′ = A′B′

Consider the NOR logic in

developed as follows:

Y = ((A+B)′+(C+D)′)′ = ((A+

Figure 2.13 Implementa

(A+B)(C+

STO

● NAND and NOR gat

● NAND and NOR can

logic like AND, OR,

● NAND can produce N

NAND.

logic as shown in Figure 2.12. The output

d in the following steps:

′+D′))′

′+D′)′

 (C′)′(D′)′

tation of the Boolean expression Y= AB+CD

using NAND gate

circuit using NOR gate

ork as either a NOR or negative AND, as

 theorem.

gic in Figure 2.13. The output expression is

 = ((A+B)′)′((C+D)′)′ = (A+B)(C+D)

ementation of the boolean expression Y=

+B)(C+D) using NOR gate

STOP TO CONSIDER

R gates are called universal gates.

R can be used to implement all the primary

, OR, NOT(invert).

duce NOR and, similarly, NOR can produce

Space for learners:

46 | P a g e

CHECK

5. The number of NOR g

6. The number of NAND

is/are ____

7. The number of NAND

A′+B is/are _____

8. The number of NOR g

is/are _____

2.9 COMBINATIONAL LO

 FUNCTIONALITIES

In this section, many types

circuits are introduced, viz. A

code converters, multiplexer,

2.9.1 The comparison funct

The magnitude of compariso

a comparator. A comparison

whether or not they are equa

function, one number in bin

other number in binary for

indicate the relationship of t

proper output line. Suppose

applied to input A and a bi

applied to input B. A ′1′ (H

indicating the relationship be

Figure 2.14 Ba

ECK YOUR PROGRESS

OR gate(s) required to implement OR is/are

AND gates(s) required to implement AND

AND gates(s) required to implement Y =

OR gates(s) required to implement Y = A′+B

AL LOGIC CIRCUIT

 types of fixed functions of combinational

, viz. Adders, comparator, decoders, encoders,

plexer, demultiplexer etc.

 function

parison performed by a logic circuit is called

parison compares two quantities and indices

re equal. Figure 2.14 represents a comparison

in binary form is applied to input A, and the

ry form is applied to input B. The outputs

ip of the two numbers by producing 1 on the

ppose that the binary representation of 3 is

d a binary representation of the number 6 is

′1′ (HIGH) will appear on the A<B output,

ip between the two numbers.

.14 Basic magnitude comparator

Space for learners:

47 | P a g e

2.9.2 The Arithmetic functi

Addition is performed by a l

two binary numbers on inpu

generates a sum (Σ) and a

2.15.

Figure

Subtraction is also perfor

requires three inputs, viz.,t

and a borrow input. The tw

borrow output. The subtra

addition operation.

Multiplication: A multipl

multiplication. Because num

inputs are necessary. The

Multiplication can be achiev

other circuits since it is mere

positions of the partial produ

Division: Division can be

comparisons, and shifts, t

conjunction with other circu

and the quotient and remaind

Code conversion: The log

conversion. A code is a co

pattern and used to represen

type of coded data into ano

Conversion from binary to B

code.

Encode: The encoder is a l

function. The encoder turns d

functions

 by a logic circuit called adder. An adder adds

n inputs A and B with a carry input (Cin) and

nd a carry output (Cout) as shown in Figure

Figure 2.15 Basic Adder

performed by a logic circuit. A subtractor

,the two numbers that are to be subtracted

The two outputs are the difference and the

subtraction operation is a special case of

ultiplier is a logic circuit that performs

e numbers are always multiplied in twos, two

. The product is the multiplier′s output.

achieved using an adder in conjunction with

s merely a series of additions with shifts in the

 products.

n be achieved with a series of subtraction,

ifts, therefore an adder can be used in

r circuits. The division requires two inputs,

mainder are generated as outputs.

e logic circuits can also be used for code

s a collection of bits arranged in a specific

present data. A code converter converts one

to another type of coded data. For example,

ry to Binary Coded Decimal (BCD) or Gray

is a logic circuit that performs the encoding

 turns data into a coded representation, such as

Space for learners:

Space for learners:

48 | P a g e

a decimal number or an alphanumeric letter. One form of encoder,

for example, turns all of the decimal digits, 0 through 9, to binary

code.

Decoder: A logic circuit called a decoder performs the decoding

operation. The decoder translates coded data, such as binary

numbers, to uncoded data, such as decimal numbers. One form of

decoder, for example, translates a 4-bit binary code into the

appropriate decimal digits.

Data selection function: The multiplexer and the demultiplexer are

two types of circuits that select data in the data selection function. A

multiplexer, often known as a MUX, is a logic circuit that transfers

digital data from many input lines to a single output line in a

predetermined time sequence. A multiplexer can be thought of as an

electronic switch that links each of the input lines to the output line

in a sequential manner. A demultiplexer (DEMUX) is a logic circuit

that converts digital data from one input line to multiple output lines

in a predetermined order. The demux is a reverse mux. When data

from numerous sources needs to be sent across one line to a distant

place and then redistributed to multiple recipients, multiplexing and

demultiplexing are utilized.

STOP TO CONSIDER

● The AND, OR, and NOT can be used to design the

complex logic circuits to perform specific operations.

2.9.3 Basic Adders

Adders are essential not only in computers, but also in a wide range

of digital systems that process numerical data. The study of digital

systems requires a basic understanding of the adder action. The half-

adder and full-adder are described in this section.

2.9.3.1 The Half-Adder

Recall the basic rules for binary addition

0+0 = 0

0+1 = 0

49 | P a g e

1+0 = 1

1+1 = 10

A logic circuit known as a ha

The half-adder takes two bi

binary digits, a sum bit an

shows a half-adder represent

Figure 2.16 Log

Half-Adder Logic from the o

Table 2.3, expressions can be

carry as functions of the inpu

1 only when both A and B ar

the AND of the input variabl

Table 2.3

A

0

0

1

1

Now, observe that the sum (

and B, are not equal. The s

exclusive-OR of the input

implementation required f

developed using Σ and Cout

gate with A and B on the in

with an exclusive-OR (XO

Remember, the XOR is imp

and inverters.

as a half-adder performs the operations.

two binary digits as inputs and produces two

bit and a carry bit, as outputs. Figure 2.16

resented by the logic symbol.

16 Logic symbol for a half-adder

 the operation of the half-adder as stated in

 can be derived for the sum and the output

e inputs. Note that the output carry (Cout) is a

d B are 1s, therefore, Cout can be expressed as

ariables. Cout = AB.

le 2.3 Half-adder truth table

B Cout Σ

0 0 0

1 0 1

0 0 1

1 1 0

 sum (Σ) is a 1 only if the input variables, A

 The sum can therefore be expressed as the

 input variables. Σ = A ⊕B. The logic

ired for the half-adder function can be

out. The output carry is produced with AND

 the inputs, and the sum output is generated

R (XOR) gate, as shown in Figure 2.17.

is implemented with AND gates, an OR gate,

Space for learners:

50 | P a g e

Figure 2.17 H

2.9.3.2 The Full Adder

The second category of ad

accepts two input bits and an

and an output carry. The ba

half-adder is that the full

symbol for a full-adder is sh

in Table 2.4 shows the opera

Figure 2.18 Log

Table 2.4

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

 2.17 Half-adder logic diagram

 of adder is the full-adder. The full-adder

and an input carry and generates a sum output

he basic difference between full-adder and a

 full-adder accepts an input carry. A logic

r is shown in Figure 2.18, and the truth table

 operation of a full-adder.

18 Logic symbol for a full-adder

le 2.4 Full-adder truth table

 Cin Cout Σ

 0 0 0

 1 0 1

 0 0 1

 1 1 0

 0 0 1

 1 1 0

 0 1 0

 1 1 1

Space for learners:

51 | P a g e

Full-Adder Logic The full

input carry. From the half-ad

bits A and B is exclusive

input carry (Cin) to be added

ORed with A⊕B, yielding

full-adder.

Σ = (A⊕B)⊕Cin. This mean

function, two 2-input exclu

must generate the term A⊕

output of the first XOR gate

2.19(a).

Figure 2.19(a) Logic req

Figure 2.19(b) Comp

The output carry is a 1 when

or when both inputs to the se

this fact by studying Table

therefore produced by the

e full-adder must add the two input bits and

adder you know that the sum of the input

usive-OR of those variables. A⊕B. For the

 added to the input bits, it must be exclusive-

lding the equation for the sum output of the

s means that to implement the full-adder sum

 exclusive-OR gates can be used. The first

⊕B, and the second has as its inputs the

 gate and the input carry, as shown in Figure

gic required to form the sum of three bits

 Complete logic circuit for a full-adder

 when both inputs to the first XOR gate are 1s

 the second XOR gate are 1s. You can verify

Table 2.4. The output carry of full-adder is

y the inputs A ANDed with B and A⊕B

Space for learners:

52 | P a g e

ANDed with Cin. These two

expression of Cout. This func

the sum logic to form a co

Figure 2.19(b). Notice that

adders, connected as shown

with their output carries OR

2.20(b) will normally be used

Figure 2.20(a) Arrangement

Figure 2.20(b)

2.9.3.3 Parallel Binary Add

Parallel binary adders are fo

adders. The basic operatio

associated input and output

A single full-adder can add t

carry. Additional full-adders

with more than one bit. As

one binary number is added

bit and a 1 or 0 carry bit to th

se two terms are ORed, as expressed in the

is function is implemented and combined with

 a complete full-adder circuit, as shown in

e that in Figure 2.19(b) there are two half-

hown in the block diagram of Figure 2.20(a),

es ORed. The logic symbol shown in Figure

be used to represent the full-adder.

ement of two half-adders to form a full-adder

.20(b) Full-adder logic symbol

y Adders

 are formed by connecting two or more full-

perations of such adders, as well as their

utput functions, are described in this section.

 add two one-bit numbers as well as an input

adders must be used to add binary numbers

it. As shown above with 2-bit integers, when

added to another, each column creates a sum

it to the next column to the left.

 10

 +10

 100

Space for learners:

53 | P a g e

In this case, the second c

column′s sum bit. A full add

numbers to be added. So two

four adders are required for

carry output is connected t

input, as shown in Figure 2.2

carry input to the least signif

the carry input of a full-adde

2.21 the least significant

represented by A1 and B1. Th

by A2 and B2. The three sum

output carry from the le

significant bit (MSB) in the s

Fig 2.

Four-bit Parallel Adders

A nibble is a collection of fo

a basic 4-bit parallel adder is

The LSBs (A1 and B1) of ea

the right-most full-adder; th

gradually higher-adders as il

each number are applied to th

of each adder is connected to

adder as indicated. These are

ond column′s carry bit becomes the third

ll adder is required for each bit in two binary

So two adders are required for 2-bit numbers,

ed for 4-bit values, and so on. Each adder′s

cted to the next higher-order adder′s carry

ure 2.21 for a 2-bit adder. Because there is no

t significant bit location, either a half-adder or

adder can be set to 0 (grounded). In Figure

icant bits (LSB) of the two numbers are

. The next higher-order bits are represented

ee sum bits are Σ1, Σ2, and Σ3. Notice that the

he left-most full-adder becomes the most

n the sum Σ3.

Fig 2.21. A 2-bit adder

n of four bits. As demonstrated in Figure 2.22,

dder is developed with four full-adder stages.

) of each number being added are applied to

der; the higher-order bits are applied to the

rs as illustrated; and the MSBs (A4 and B4) of

ed to the left-most full-adder. The carry output

cted to the carry input of the next higher-order

ese are called internal carries.

Space for learners:

54 | P a g e

In terms of the method use

there are two types: the rip

adder. A ripple carry adder i

full-adder is connected to th

stage (a stage is one full-ad

any stage cannotbe produc

causes a time delay in the a

delay for each full-adder is th

carry until the output carry o

are already present.

Figure 2

Look-ahead carry addition

addition process by elimina

ahead carry adder predicts e

using either carry generatio

input bits of each stage.

Carry generation occurs

(generated) internally by the

when both input bits are 1s.

the AND function of the two

Carry Propagation occurs w

the output carry. An input ca

when either or both of the i

Cp, is expressed as the OR fu

2.9.3.4 Truth table for 4-bit

Table 2.5 is the truth table f

truth tables may be called fu

The subscripts n represent th

d used to handle carries in a parallel adder,

ripple carry adder and carry look-ahead

adder is one in which the carry output of each

d to the carry input of the next higher-order

adder). The sum and the output carry of

duced until the input carry occurs. This

 the addition process. The carry propagation

er is the time from the application of the input

arry occurs, assuming that the A and B inputs

igure 2.22 A 4-bit Adders

dition is a technique for speeding up the

liminating the ripple carry delay. The look-

dicts each stage′s output carry and produces it

ration or carry propagation based on the

curs when an output carry is produced

by the full-adder. A carry is generated only

re 1s. The generated carry, Cg, is expressed as

he two input bits, A and B. Cg=AB.

curs when the input carry is rippled to become

put carry may be propagated by the full-adder

f the input bits are 1s. The propagated carry,

 OR function of the input bits. Cp = A + B.

bit parallel adder

table for a 4-bit adder. On Some data sheets,

function tables or functional truth tables.

sent the adder bits and can be 1, 2, 3, or 4 for

Space for learners:

Space for learners:

55 | P a g e

the 4-bit adder. Cn-1 is the carry from the previous adder. Carries C1,

C2, and C3 are generated internally. C0 is an external carry input and

C4 is an output.

Table 2.5 Truth table for 4-bit parallel adder

Cn-1 An Bn Σn Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

STOP TO CONSIDER

● A half-adder has two inputs and two outputs.

● A full-adder has three inputs and two outputs.

● A 4-bit parallel adder can add two 4-bit binary numbers.

● Two half-adders can be used to design a full adder.

CHECK YOUR PROGRESS

State whether true or false

9. The sum expression for a half adder is A+B

10. The carry out Cout expression for a full adder is AB+Cin

11. A 4-bit parallel adder has four full adders.

12. There are two types of carry, they are ripple carry and look

ahead carry

13. Carry generation occurs when an output carry is produced.

2.9.4 Binary Subtractor

Binary subtractors are special circuits which subtract two binary

numbers from each other. Binary subtractor produced a difference

and borrow output after the completion of the subtraction operation.

Binary subtraction has two digits, subtracting a “0” from a “0” or a

“1” leaves the result unchanged as 0-0 = 0 and 1-0 = 1. Subtracting

56 | P a g e

a “1” from a “1” results in a

requires a borrow. In other w

borrow 1 then the minuend

becomes 10-1 which will giv

borrow bit 1. The half-subtr

below.

2.9.4.1 The Half-Subtractor

A half subtractor is a logic

operation on two binary d

difference (D) and a borrow

Figure 2.23 shows the logic s

Figure 2.23 Logi

Table 2.6: Truth

Inputs

A B Diffe

0 0

0 1

1 0

1 1

From the Table 2.6 of the ha

can be obtained by doing ex

Borrow (Bout) can be obtaine

and B. The Boolean expressi

lts in a “0”, but subtracting a “1” from a “0”

other words, 0-1 requires a borrow and if you

inuend 0 becomes 10 and the operation 0-1

ill give the output 1, this also leads to set the

subtractor and full-subtractor are discussed

ractor

a logical circuit that performs a subtraction

ary digits. The half subtractor produces a

borrow out (Bout) bit for the next stage. The

 logic symbol of a half-subtractor circuit.

3 Logic symbol of Half-Subtractor

: Truth Table of a Half-Subtractor

Outputs

Difference(D=A-B) Borrow (Bout)

0 0

1 1

1 0

0 0

 the half subtractor, the difference (D) output

ing exclusive-OR between A and B and the

btained by doing AND operation between A′

pression for a half subtractor is as follows.

D = A⊕B

Bout = A′B

Space for learners:

57 | P a g e

Figure 2.24 Logi

The Boolean expressions for

half-subtractor are exactly

output carry of the half-adde

circuit, difference between t

the minuend input A.

The disadvantage of the h

multiple bits there is no o

stages. So, we need a full su

borrow-in input from the ear

2.9.4.2 The Full-Subtractor

The full-subtractor has three

(minuend) and B (subtrahe

additional Borrow-in (Bin) in

the subtraction process from

2.25.

Figure 2.25 : Logi

4 Logic circuit for Half-subtractor

ns for ‘sum’ in half-adder and ‘difference’ in

actly the same. The only difference is the

adder and the borrow out of the subtractor

ween these two quantities is the inversion of

the half-subtractor is that if you subtract

 no option for ‘borrow-in’ from its earlier

full subtractor circuit to take into account this

he earlier stages.

ractor

 three inputs. The two single bit data inputs A

btrahend) are the same as before plus an

) input to receive the borrow generated by

s from a previous stage as shown in Figure

 : Logic symbol of a Full-Subtractor

Space for learners:

58 | P a g e

The “full subtractor” combin

operation on three binary bit

D and borrow Bout. Like the a

be thought of as two half su

first half subtractor passing

as shown in the Figure 2.26

full-subtractor is shown in th

Figure 2.26: Arrangement

Table 2.7: Tru

Input

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

The truth table Table 2.7 sho

and B, the truth table operati

a. If A = 0, B = 0, and

are 0.

b. In the second set of i

so before performin

have to increment the

ombinational circuit performs the subtraction

ary bits resulting in outputs for the difference

e the adder circuit, the full subtractor can also

half subtractors connected together, with the

ssing its borrow to the second half subtractor

re 2.26 and the complete logic circuit of the

n in the Figure 2.27.

ement of two half-subtractors to form a full-

subtractor

7: Truth for the Full-Subtractor

Inputs Outputs

 Bin D Bout

 0 0 0

 1 1 1

 0 1 1

 1 0 1

 0 1 0

 1 0 0

 0 0 0

 1 1 1

.7 shows the subtraction operation between A

perations are explained below:

, and Bin= 0, then the output D and Bout both

et of inputs the A = 0, B = 0, but the Bin =1,

orming the subtraction operation, first, you

ent the B by 1 unit then the B will change to 1

Space for learners:

Space for learners:

59 | P a g e

(Bin=1 indicates there was a borrow in the previous step of

the series of operations here previous step is not referring the

first set of input operation of the Table 2.7), now if you

perform the A-B i.e. 0-1 you need a borrow then only the

operation will be possible, so, if you borrow 1 then the A

will change to 10 and the subtraction operation 10-1 will

give 1, i.e. D=1, since the operation was performed using

borrow, the Bout=1.

c. In the third set of inputs A=0, B=1, Bin= 0, since Bin= 0, so,

it is not necessary to increment the B, but A-B i.e. 0-1 in this

step needs a borrow, so you have to borrow 1 to A, the A

will change to 10 and the operation will change to 10-1=1,

so, D=1, Bout=1.

d. In the fourth set of inputs A=0, B=1, Bin= 1, this time Bin= 1,

so, you have to increment the B by one unit, then B will

change to 10, now, if you perform the subtraction operation

A-B, i.e. 0-10 then you need a borrow, if you borrow 1 the A

will change to 10 and the operation becomes 10-10=0,

therefore D=0, since the operation was completed using a

borrow so, Bout= 1.

e. In the fifth set of inputs A=1, B=0, Bin= 0, since Bin= 0, so

the B will not change and the A-B i.e. 1-0 does not need any

borrow therefore D=1 and Bout= 0.

f. In the sixth set of inputs A=1, B=0, Bin= 1, since Bin= 1, so,

B will be incremented by 1 unit and B becomes 1 i.e. B=1

and the operation A-B will be 1-1=0, hence D=0 and Bout= 0.

g. In the seventh set of inputs A=1, B=1, Bin= 0, since Bin= 0,

so, B will not change and the A-B i.e. 1-1 does not need any

borrow therefore D=0 and Bin= 0.

h. In the eighth set of inputs A=1, B=1, Bin= 1, since Bin= 1, so,

B will be incremented by 1 unit and the value of B becomes

10, now, the operation A-B becomes 1-10 which is not

possible therefore A needs borrow to complete the operation,

after 1 borrow to A the A becomes 11 and A-B = 11-10.

Hence D=1 and Bout= 1.

60 | P a g e

Figure 2.27: Complete

STOP

● Subtractor circuits ar

● Subtraction operation

that works in normal

● The difference expres

same as the sum expr

● The Full-subtractor su

stages.

● Bin= 1 indicates there

● If A<B+Binthen A ne

2.9.5 Comparators

A comparator′s primary role

binary quantities in order to i

comparator circuit, in its mos

are equal.

2.9.5.1 Equality

Because its output is 1 when

when they are equal, the exc

comparator. As a 2-bit c

exclusive-OR gate.

mplete logic circuit for a full-subtractor

TOP TO CONSIDER

uits are similar to the adder circuits.

eration in binary works in the same pattern

ormal mathematics.

 expression of the subtractor circuit is the

 expression of the adder circuit.

ctor supports borrow in from the previous

s there is a borrow in the previous step.

n A needs borrow from its

y role is to compare the magnitudes of two

er to identify their relationship. A

its most basic form, determines if two integers

 when the two input bits are not equal and 0

the exclusive-OR gate can be used as a basic

bit comparator, Figure 2.28 depicts the

Space for learners:

61 | P a g e

Figure 2.28 Ba

An additional exclusive-OR

values comprising two bit

numbers′ least significant bi

two most significant bits (M

numbers are equal, their corr

exclusive-OR gate′s output i

are not equal, the exclusive

Figure 2.29 2-bits

Two inverters and an AND

output representing the equ

shown in Figure 2.29. Each

and applied to the AND gate

input bits are identical. The

resulting in a 1 on both AN

When the two numbers a

corresponding bits are diffe

AND gate input, resulting i

result, the AND gate′s outpu

equal (1) or unequal (0).

.28 Basic comparator operation

OR gate is required to compare binary

o bits each. Gate G1 compares the two

ant bits (LSBs), while gate G2 compares the

its (MSBs), as seen in Figure 2.29. If the two

ir corresponding bits are also equal, and each

utput is a 0. If the corresponding sets of bits

sive-OR gate output is set to 1.

bits binary number comparison

 AND gate can be used to produce a single

he equality or inequality of two values, as

. Each exclusive-OR gate′s output is inverted

D gate′s input. When each exclusive-two OR′s

l. The numbers′ corresponding bits are equal,

oth AND gate inputs and a 1 on the output.

bers are not equal, one or both sets of

e different, and a 0 appears on at least one

lting in a 0 on the AND gate′s output. As a

 output indicates whether the two numbers are

Space for learners:

62 | P a g e

2.9.5.2 Inequality

Many IC comparators have

equality output that show w

compared is greater. As ind

comparator in Figure 2.30,

number A is larger than n

indicates when number A is s

Figure 2.30 Logic

To determine an inequality

examine the highest-order

conditions are possible:

1. If A3=1 and B3=0, nu

2. If A3=0 and B3=1, nu

3. If A3= B3, then you m

for an inequality.

These three operations are va

The general procedure use

inequality of the bit position

(MSB). When such an ineq

two numbers is established

order bit positions must be

opposite indication to occur;

precedence.

CHECK

State whether true or false

14. The exclusive-OR gate is

15. The HIGH output will ap

16. LSB stands for Least Sig

s have additional outputs in addition to the

how which of the two binary integers being

As indicated in the logic symbol for a 4-bit

30, there is an output that indicates when

than number B (A>B) and an output that

r A is smaller than number B (A<B).

Logic symbol for a 4-bit comparator

uality of binary numbers A and B, you first

order bit in each number. The following

=0, number A is greater than number B.

=1, number A is less than number B.

 you must examine the next lower bit position

 are valid for every bit position in the number.

re used in the comparator is to check the

osition, starting from the mostsignificant bit

n inequality is found, the relationship of the

lished, and any other inequalities in lower-

ust be ignored because it is possible for an

 occur; the highest-order indication must take

ECK YOUR PROGRESS

 false

gate is a basic comparator.

will appear if we compare 112 and 112.

st Significant Bit.

Space for learners:

63 | P a g e

2.9.6 Decoders

A decoder′s basic task is

combination of bits (code) o

with a specific output level

handle n bits and 1 to 2
n
 outp

more n-bit combinations in it

2.9.6.1 The Basic Binary De

Assume you need to figure

digital circuit′s inputs. Bec

when all of its inputs are HIG

basic decoding element. As

occurs, you must ensure that

this may be done by invertin

in Figure 2.31.

(a)

Figure 2

The logic equation for the de

illustrated in Figure 2.31(b).

except when A0=1, A1=0, A

A0 is the LSB and A3 is the

number, the LSB is the righ

and the top-most bit in a

otherwise. If the NAND gat

Figure 2.31, a LOW output

binary code, which is 1001 in

sk is to identify the presence of a specific

ode) on its inputs and to signify that presence

t level. A decoder contains n input lines to

output lines to signal the presence of one or

ns in its most basic form.

ary Decoder

figure out when a binary 1001 appears on a

. Because it provides a HIGH output only

are HIGH, an AND gate can be utilized as the

t. As a result, when the binary number 1001

re that all of the AND gate′s inputs are HIGH;

verting the two middle bits (the 0s) as shown

 (b)

igure 2.31 Binary decoder

 the decoder of Figure 2.31(a) is developed as

.31(b). You should verify that the output is 0

=0, A2=0, and A3=1 are applied to the inputs.

is the MSB. In the representation of a binary

he right-most bit in a horizontal arrangement

 in a vertical arrangement, unless specified

D gate is used in place of the AND gate in

utput will indicate the presence of the proper

001 in this case.

Space for learners:

64 | P a g e

2.9.6.2 3 to 8 line Decoder

Figure 2.32 shows a decode

outputs. It uses all AND gat

note that for a given input co

output corresponding to the

code (for example, only whe

become HIGH). The decode

can be called a 3-8 line dec

output lines. It can also be ca

because it takes a 3-digit bin

eight (octal) outputs correspo

of 8 decoder because only 1

Figure 2.3

Table 2.8: 3-to-8-line Deco

Inputs Decoding

Function
C B A O0

0 0 0 C′B′A′ 1

0 0 1 C′B′A 0

0 1 0 C′BA′ 0

0 1 1 C′BA 0

oder

decoder circuit with three inputs and 2
3
 = 8

D gates, so the output is active high. Please

put code, the only valid output (HIGH) is the

to the decimal equivalent of the binary input

ly when CBA = 1012 = 510, the O5 output will

ecoder can be referenced in various ways. It

ne decoder because it has 3 input lines and 8

o be called a binary octal decoder or converter

git binary input code and activates one of the

orresponding to that code. It is also called a 1

nly 1 of the 8 outputs is activated at a time.

ure 2.32 3-to-8-line decoder

e Decoder truth table with decoding function

Outputs

O1 O2 O3 O4 O5 O6 O7

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

Space for learners:

65 | P a g e

1 0 0 CB′A′ 0

1 0 1 CB′A 0

1 1 0 CBA′ 0

1 1 1 CBA 0

CHECK Y

17. An n-bit decoder can hav

18. Determine the logic expr

HIGH level on the output

2.9.7 Encoders

An encoder is essentially a c

opposite of a decoder. An en

of its inputs representing a

converts it to a coded outp

devise an encoder for encod

process of converting the

coded form is called encodin

2.9.7.1 Decimal to BCD En

As shown in Figure 2.33, thi

each decimal digit, and fou

code. This is a simple ten-to

Figure 2.33 Logic sym

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

ECK YOUR PROGRESS

an have ____ output lines

c expression for the input 0111 by producing

lly a combinatorial logic circuit that does the

 An encoder accepts an active level from one

ting a number such as decimal or octal and

d output such as BCD and binary. You can

 encoding various symbols or characters. The

 the familiar symbols and numbers into a

ncoding.

D Encoder

33, this form of encoder has 10 inputs, one for

nd four outputs that correspond to the BCD

to-four line encoder.

ic symbol for a decimal to BCD encoder

Space for learners:

Space for learners:

66 | P a g e

Table 2.7 lists the BCD (8421) code. To evaluate the logic, you can

use this table to explore the relationship between each BCD bit and

the decimal digits. For instance, the most significant bit of the BCD

code, A3, is always a 1 for decimal digit 8 or 9. An OR expression

for bit A3 in terms of the decimal digits can therefore be written as

A3 =8+9. Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 can be

expressed as an OR function as follows:

A2 = 4+5+6+7

Bit A1 is always 1 for decimal digit 2, 3, 6, or 7 and can be

expressed as

A1 = 2+3+6+7

Finally, A0 is always a 1 for decimal digits 1, 3, 5, 7, or 9. The

expression for A0 is

A0 = 1+3+5+7+9

Table 2.9: Decimal to BCD encoder truth table

Decimal

Digit

BCD code

A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

Let us now use the logic expression we just generated to implement

the logic circuitry required for encoding each decimal digit to a

BCD code. Each BCD output is easily formed by ORing the

relevant decimal digit input lines. Figure 2.34 depicts the basic

encoder logic that results from these expressions. The circuit in

Figure 2.34 has the following fundamental operation: The

appropriate levels are displayed on the four BCD output lines when

HIGH occurs on one of the decimal digit input lines. If input line 9

is HIGH (and all other input lines are LOW), for instance, this

67 | P a g e

condition will result in HIG

outputs A1 and A2, which is t

Figure 2.34 B

STOP

● Encoders perform the

● Encoders convert fam

forms.

● An encoder having

output lines in the ou

2.9.8 Multiplexers

The multiplexer (MUX) is a

from multiple sources to be

over that line to a common

several data input lines and o

input, allowing you to chang

out. The multiplexer is also c

Figure 2.35 shows a logic sy

Because there are two data

input lines can be picked wit

n HIGH on outputs A0 and A3 and LOW on

ich is the BCD code (1001) for decimal 9.

2.34 BCD encoder logic circuit

TOP TO CONSIDER

rm the reverse operation of the decoders

ert familiar symbols or numbers to coded

2
n
 input lines in the input will have n

the output.

X) is a device that allows digital information

 to be routed to a single line for transmission

mmon destination. The basic multiplexer has

s and one output line. It also has a data select

 change digital data from any input to the line

 also called a data selector.

gic symbol for a 4-input multiplexer (MUX).

o data select lines, any one of the four data

ed with two select bits.

Space for learners:

68 | P a g e

Figure 2.35 Logic s

In Figure 2.35, a 2-bit code

the data on the selected data

If a binary 0 (S1=0 and S0=0

data on input D0 appear on t

and S0=1) is applied to the

appear on the data output. If

the data on D2 appear on the

applied, the data on D3 are s

of this operation is shown in

Table 2.10: 4 to 1

Data select in

S1

0

0

1

1

Let′s have a look at the logi

requires. The status of the

data output. As a result, you

output from the data input an

The data output is equal to D

The data output is equal to D

The data output is equal to D

The data output is equal to D

When these terms are ORed,

is

ogic symbol of a 4-input multiplexer

 code on the data-select (S) inputs will allow

d data input to pass through to the data output.

=0) is applied to the data-select lines, the

n the data-output line. If a binary 1 (S1=0

to the data-select lines, the data on input D1

tput. If a binary 2 (S1=1 and S0=0) is applied,

on the output. If a binary 3 (S1=1 and S0=1) is

are switched to the output line. A summary

wn in Table 2.8.

: 4 to 1 line multiplexer truth table

lect inputs

Input selected
S0

0 D0

1 D1

0 D2

1 D3

e logic circuits that this multiplexing process

f the selected data input is replicated in the

lt, you can construct a logic expression for the

put and the inputs you choose.

al to D0 only if S1=0 and S0=0; Y= D0S′1S′0

al to D1 only if S1=0 and S0=1; Y= D1S′1S0

al to D2 only if S1=1 and S0=0; Y= D2S1S′0

al to D3 only if S1=1 and S0=1; Y= D3S1S0

ORed, the total expression for the data output

Space for learners:

69 | P a g e

Y = D0S′1S′0 + D1S′1S0 +D2

The implementation of this

gates, a 4-input OR gate,

complements of S1 and S0

can be selected from any on

referred to as a dataselector

Figure 2.36 Circuit

STOP

● Multiplexers are also

● A 4-input data lines m

● A 8-input data lines m

● A 2
n
 input data lines m

● The output depends o

2.9.9 Demultiplexer

The demultiplexer (DEMUX

function. It takes digital info

to a specified number of ou

is also called a data distribu

also be used as a demultiplex

2S1S′0 + D3S1S0

of this equation requires four 3-input AND

 gate, and two inverters to generate the

0 as shown in Figure 2.36. Because data

any one of the input lines, this circuit is also

tor.

ircuit diagram of 4-to-1 multiplexer

TOP TO CONSIDER

e also known as data selectors.

lines multiplexer has two select lines.

lines multiplexer has three select lines.

 lines multiplexer has n select lines.

ends on the input data and select lines bits.

EMUX) basically reverses the multiplexing

al information from one line and distributes it

 of output lines. Therefore, the demultiplexer

istributor. As you will learn, the decoder can

ltiplexer.

Space for learners:

